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Abstract

In this paper we propose a new method to estimate a discrite choice demand model when

individual level data are available. The method employs a two-step procedure. Step 1

predicts the choice probabilities as functions of the observed individual level characteristic.

Step 2 estimates the structural parameters of the model using the estimated choice prob-

abilities at a fixed point. We use simulations to compare the performance of the proposed

procedure with the standard methodology. We find that our method delivers an improved

precision as well as a substantially faster convergence time. We supplement the analysis

by providing the large sample properties of the proposed estimator.

Keywords: Demand Estimation, Discrete Choice, Random Coefficients, Prediction, Ma-

chine Learning

1 Introduction

The primary goal of applied economic research is informing policy decisions. In many cases

experimental analysis is infeasible or prohibitively expensive. In those cases researchers have

to rely on other sources of identification. Moreover, some of the important applications require

extrapolating outside of the support of the observed data. For instance, the analysis of a

potential merger might require predicting the quantities and prices after two of the three firms
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in an industry merge. It is quite possible that within the relevant time span the industry has

always consisted of three firms. As a result, the training set would not contain the data necessary

to obtain a model capable of accurate counterfactual predictions. Traditionally researchers would

rely on theory to specify a functional form and extrapolate outside of the support of the observed

data. Issues like that have limited the adoption of purely predictive methods from statistical

and machine learning in economic research.

However, in some cases parts of the overall empirical strategy can be posed as predictions

problems. In that case the full force of the machine learning methods can be invoked providing

the flexibility of the functional form and computational efficiency.1 In this paper we consider the

discrete choice demand estimation (McFadden, 1973; Berry, Levinsohn, and Pakes, 1995; Nevo,

2000) with coefficients that depend on observable individual level characteristics. The standard

approach utilized in the literature is to assume a spicific parametric form of the dependence on

the individual level variable. We propose an alternative two-step procedure. First, we solve a

prediction problem that links the individual level variable to the choice probabilities. Second,

we estimate the standard discrete choice model to find the coefficient at a pre-defined value of

the covariate. This allows us to obtain the values of the coefficient at any other point by solving

a system of linear equations.

The standard approach relies heavily on either correctly specifying the functional form or

using a functional form that doesn’t lead to a high bias or variance. It doesn’t take into account

the potential structure of the space, such as, for example, sparcity, either. Another issue with

this approach is that it may become computationally burdensome when the dimensionality of

the individual level characteristic increases. Using a prediction approach can address all of these

issues.

We compare the proposed method to the more common approach by simulating the distri-

bution of estimated elasticities. We consider two variations of the standard procedure: (i) the

case when the parametric form of the coefficient as a function of the individual level variable is

misspecified, and (ii) the case when it is specified correctly (the oracle case). When compared

1For a review of commonly used prediction methods see, for example, Friedman, Hastie, and Tibshirani (2001)
and Murphy (2012).
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in terms of the root-mean-square error our method performs about 65% better than the oracle2

while the misspecified estimation performs almost 100% worse than the oracle. Perhaps the

biggest advantage of the proposed procedure is its computational efficiency. We find that in

the simplest case—when the individual level characteristic is a scalar—our method converges

almost twice as fast as the considered alternatives. The efficiency gains become more significant

when the dimensionality increases.

We also provide theoretical results that justify the use of the proposed estimator—it is

consistent and has the same asymptotic distribution as the oracle estimator.

2 Related Literature

Berry and Haile (2014) and Dunker, Hoderlein, and Kaido (2017) address the problem of non-

parametric identification in discrete choice demand models and Compiani (2018) proposes a

specific way to estimate a model given the data commonly available in applications.

A study somewhat related to ours is Gillen, Shum, and Moon (2014) that uses ideas similar to

those of Belloni, Chernozhukov, and Hansen (2014b) and Farrell (2015) in the context of demand

estimation when the space of product-level characteristics is high-dimensional and sparse. Gillen,

Montero, Moon, and Shum (2015) studies the issue of selection from a set of demographic

variables to include in demand estimation. Athey, Blei, Donnelly, Ruiz, and Schmidt (2018)

use individual level data and machine learning methods to estimate demand for restaurants and

travel time.

There are a number of studies that apply ideas from machine learning to causal inference.

See, for example, Hartford, Lewis, Leyton-Brown, and Taddy (2016); Wager and Athey (2017);

Athey and Imbens (2016); Fan (2012); Belloni, Chernozhukov, and Hansen (2011b); Gautier

and Tsybakov (2011); Hansen and Kozbur (2014); Chernozhukov, Hansen, and Spindler (2015);

Bloniarz, Liu, Zhang, Sekhon, and Yu (2016); Athey, Imbens, and Wager (2016); Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2017); Belloni, Chernozhukov, and

Hansen (2011a, 2014a); Belloni, Chen, Chernozhukov, and Hansen (2012).

2Why out method is more precise than the one based on the correct specification needs to be investigated
further.
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3 Model

Consider the following discrete choice setting. There are M separate markets populated by

Nm individuals for m = 1, . . . ,M . Each individual i = 1, . . . , Nm is characterized by a set of

observable covariates Zim ∈ Rp and her product choice dim ∈ {0, 1, . . . , J}, where J is the number

of products available in each market3 and dim = 0 corresponds to the outside good. Product

j = 1, . . . , J is characterized by an observable k-dimensional variable Xjm and an unobservable

ξjm ∈ R. We also assume the existence of a set of instimental variables Wjm ∈ Rl that are

uncorrelated with ξjm. Utility uijm derived by individual i from buying good j = 1, . . . , J in

market m is given by

uijm = β(Zim)TXjm − αPjm + ξjm + εijm,

where Pjm is the price of product j in market m and εijm is an idiosyncratic error distibuted

according to a Generalized Extreme Value Type-I (Gumbel) distribution. The utility of the

outside good is ui0m = εi0m.

We assume that each person chooses the good that provides the highest level of utility in

which case the probability that individual i chooses good j = 1, . . . , J in market m is4

sjm(Zim) =
exp

(
β(Zim)TXjm − αPjm + ξjm

)
1 +

∑
j′ exp (β(Zim)TXj′m − αPj′m + ξj′m)

.

Averaging across individuals we obtain the market shares,

sjm =
1

Nm

Nm∑
i=1

exp
(
β(Zim)TXj − αPjm + ξjm

)
1 +

∑
j′ exp (β(Zim)TXj′ − αPj′m + ξj′m)

.

4 Estimation

4.1 Standard Approach

The standard procedure utilizes the following algorithm:

3It is straightforward to generalize to the case when each market has a separate set of Jm products.
4See, for example, Nevo (2000).
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1. Specify the parametric functional form of β(Z) = g(Z, γ), where g is known and γ is a

parameter.

2. Initialize the parameters to be estimated: (α, γ) = (α0, γ0).

3. Iterate (α, γ) until convergence. At step n:

(a) Solve for ξjm, j = 1, . . . , J , m = 1, . . . ,M by inverting the market shares—find

ξ̂jm such that the implied market shares sjm(αn, γn, ξ̂jm) coincide with the observed

market shares sjm (BLP inversion).

(b) Compute the cost function L(αn, γn, ξ̂jm) (usually based on generalized method of

moments/minimum distance estimation).

(c) Update the parameters (α, γ) = (αn+1, γn+1).

4.2 Proposed Method

The method we propose in this paper is based on the following idea. If in each market the

market shares for a given Z = Z0 were observed, the problem would reduce to a simple discrete

choice estimation. Indeed,

sjm(Z0) =
exp

(
β(Z0)

TXjm − αPjm + ξjm
)

1 +
∑

j′ exp (β(Z0)TXj′m − αPj′m + ξj′m)
.

We can let β = β(Z0) and obtain the estimates (α̂, β̂) using steps 2–3 from the algorithm

described above. As sjm(Z0) are unobserved, we attempt to estimate them using the individual

level data, (Zim, dim).5

We propose the following algorithm:

1. Use a prediction method of choice to fit s(z, j,m) = P (dim = j|Zim = z).

2. Pick Z0 within the support of Z.6

5Another issue is estimating β(Z) at Z 6= Z0. We address this in the next section.
6The optimal choice of Z0 is an important question that we leave for future research. In the simulations we

use the median of the observed values for every dimension of Z.
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3. Predict ŝ(Z0, j,m) for every j = 1, . . . , J and m = 1, . . . ,M .

4. Initialize the parameters to be estimated: (α, β) = (α0, β0).

5. Iterate (α, β) until convergence. At step n:

(a) Solve for ξjm, j = 1, . . . , J , m = 1, . . . ,M by inverting the predicted market shares—

find ξ̂jm such that the implied market shares sjm(αn, βn, ξ̂jm) coincide with the pre-

dicted market shares ŝjm.

(b) Compute the cost function L(αn, βn, ξ̂jm).

(c) Update the parameters (α, β) = (αn+1, βn+1).

4.2.1 Estimating β̂(Z) for an Arbitrary Z

So far we have estimated β̂(Z) for a single evalue of Z = Z0. However, β̂(Z) can be easily derived

from ŝ(Z, j,m) by solving a system of linear equations. As before, let β = β(Z0). Additionally,

define cjm(Z) = (β(Z)− β)T Xjm. Then, β(Z)TXjm = βTXjm + cjm(Z) and

sjm(Zim) =
wjm(Zim) exp

(
βTXjm − αPjm + ξjm

)
1 +

∑
j′ wj′m(Zim) exp (βTXj′m − αPj′m + ξj′m)

,

where wjm(Z) = exp (cjm(Z)).

Note that the set of equations

ŝjm(Z0) =
exp

(
β̂TXjm − α̂Pjm + ξ̂jm

)
1 +

∑
j′ exp

(
β̂TXj′m − α̂Pj′m + ξ̂j′m

)
for j = 1, . . . , J and m = 1, . . . ,M uniquely defines the values of exp

(
β̂TXj − α̂Pjm + ξ̂jm

)
for

all j and m. Let their estimates produced from ŝjm(Z0) be Êjm. Then, we have the following

system of linear equations:

ŝjm(Z) + ŝjm(Z)
J∑

j′=1

ŵj′m(Z)Êj′m = ŵjm(Z)Êjm

6



We can solve for ŵjm(Z), which is equivalent to ĉjm(Z). Finally, once we have ĉjm(Z) for all j

and m, we can use these values to recover β̂(Z) by regressing ĉjm(Z) on Xjm.

5 Theoretical Results

There are two main results in this paper. The first one shows that if we have any consistent

estimator of sjm(Z0), the resulting procedure leads to a consistent estimator for α. Conse-

quently, many of the known flexible machine learning algorithms for non-parametric probability

estimation result in consistent estimators of α.

Second important result is the oracle property. That is, once the number of individuals per

market is large relative to the number of markets, the distribution of the proposed estimator

is the same as of the estimator obtained when the functional form of β(Z) if known up to an

additive constant. In other words, β(Z) = β(Z0) + f(Z), where f(Z) is a known function and

β(Z0) is a parameter to be estimated.

Theorem 1. If ŝjm(Z0)
p−→ sjm(Z0) uniformly over m = 1, . . . ,M as M −→∞, then α̂M

p−→ α

and β̂
p−→ β.

Proof. Note that BLP inversion of the form ξ(s; a, b) for fixed parameters (a, b) is a continuous

function of s. Hence, if ŝjm(Z0)
p−→ sjm(Z0), we have ξ(ŝjm(Z0); a, b)

p−→ ξ(sjm(Z0); a, b)

uniformly. Denote by Ξjm(a, b)
p−→ 0 the difference between ξ(ŝjm(Z0); a, b) and ξ(sjm(Z0); a, b).

The moment driven objective function has the property:

1

M

M∑
m=1

g(ξjm, Xjm, Pjm,Wjm)
p−→ 0, (5.1)

and has two important properties: (i) it is continuous in ξ, (ii) it satisfies the identification

assumption,7 meaning that:

1

M

M∑
m=1

g(ξ(sjm(Z0); a, b), Xjm, Pjm,Wjm)
p−→ 0, if (a, b) = (α, β), (5.2)

7For the proof that steps 4–5 of the proposed procedure lead to consistent estimators as M −→ ∞ see, for
example, Freyberger (2015).
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and converges to something positive otherwise. We thus have:

1

M

M∑
m=1

g(ξ(ŝjm(Z0); a, b), Xjm, Pjm,Wjm) =

1

M

M∑
m=1

g(ξ(sjm(Z0); a, b) + Ξjm(a, b), Xjm, Pjm,Wjm)
p−→

lim
M→∞

1

M

M∑
m=1

g(ξ(sjm(Z0); a, b), Xjm, Pjm,Wjm) (5.3)

as Ξjm(a, b) converges in probability to zero uniformly over m. To complete the proof we need

to fix any neighborhood of (α, β) and to observe that the last equation implies that for large

enough M (α̂, β̂) must lie inside this neighborhood.

There are a number of estimation procedures that guarantee the condition required by The-

orem 1. The following result provides several sufficient conditions.

Lemma 1. The following procedures provide a (uniformly over m) consistent estimator of

sjm(Z0):

(i) Kernel ridge regression with the tuning parameter approaching zero.

(ii) Sieve estimator with the limiting space containing s(Z).

(iii) AdaBoost with the appropriate stopping rule.

(iv) Sufficiently flexible neural network.

Proof. The result for (i) follows from Evgeniou, Pontil, and Poggio (2000) and Theorem 29.8

of Devroye, Györfi, and Lugosi (1996). Chen (2007) provides the technical conditions under

which (ii) produces a consistent estimator. The results from Bartlett and Traskin (2007) specify

the stopping rule that depends on the sample size and guarantees the convergence. Cybenko

(1989) provides the results for (iv) for the case of a single hidden layer neural network with a

sufficiently large number of neurons.

Theorem 2. Assume that M,N −→ ∞. Then the asymptotic distribution of (α̂oracle, β̂) is the

same as the asymptotic distribution of the limiting proposed estimator, that is lim
N→∞

(α̂ML
M,N , β̂

ML
M,N).
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Proof. In fact, this statement is nothing more than saying that the values of unobservables, ξjm,

are the same in population regardless of whether we use just a single point, sjm(Z0), or the

whole curve, sjm(·). This is true as the whole curve is uniquely defined by the value at Z0 and

ξjm. In fact, that is exactly what we are going to show. Let us fix parameters (a, b). With just

one point, we invert ξ1jm as a solution to the following equation:

log(sjm(Z0))− log(s0m(Z0)) = bTXjm − aPjm + ξ1jm (5.4)

If we invert from the full curve, then ξojm is set to match the share on average. If hm(Z) is the

density of consumers in market m, this results in equation:

∫
sjm(Z)hm(Z) dZ =

∫ exp
(

(b+ f(Z))T Xjm − aPjm + ξojm

)
1 +

∑
j′ exp

(
(b+ f(Z))T Xj′m − aPj′m + ξoj′m)

)hm(Z) dZ (5.5)

However, from the structural form, for any Z we have:

log(sjm(Z))− log(s0m(Z)) = log(sjm(Z0))− log(s0m(Z0)) + f(Z)TXjm (5.6)

As a result, once we’ve matched sjm(Z0), we’ve matched the whole curve perfectly and ξ1jm solves

integral equality above pointwise. Thus, ξojm = ξ1jm.

6 Simulations

To illustrate the performance differences of different methods we consider a setting with J = 2

goods (plus the outside good) and M = 50 separate markets. Each market is populated by

N = 1000 consumers. Both Xjm and Zim are one-dimensional (p = k = 1) and there price is

exogenous.8

We let β(Z) = γ0 + γ1Z+ γ2Z
2 and consider three different cases: (i) the standard approach

when β(Z) is misspecified and β̃(Z) = γ̃0 + γ̃2Z
2 is used instead, (ii) the standard approach

when β(Z) is correctly specified, and (iii) the proposed algorithm. The true value of the price

8This is done for simplicity to ignore the instruments, Wjm, but does not affect the results.
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coefficient, α, is 1.

We use the minimum distance estimator with the following moments:

1. The covariance between Xjm and ξ̂jm has to be close to zero.

2. The covariance between Pjm and ξ̂jm has to be close to zero.

3. The covariance between Zim and Xdimm (where Xdimm denotes the characteristics of the

good chosen by individual i in market m) has to be close to the covariance between Zim

and
∑

j ŝjm(Zim)Xjm (only for the oracle case).

4. The covariance between Z2
im and Xdimm has to be close to the covariance between Z2

im and∑
j ŝjm(Zim)Xjm (only for the misspecified and the oracle cases).

For the first step of the algorithm we use the kernel ridge regression as presented in Murphy

(2012).

We estimate the model B = 50 times and obtain an estimate α̂b at each iteration b = 1, . . . , B.

The distributions of these values are shown in Figure 1. In the plot, “Misspecified” refers to

case (i), “Oracle” to case (ii), and “Proposed” to case (iii).

6.1 Precision

As reported in Table 1, the proposed procedure performs well compared to the oracle case

in terms of both—the bias and the root-mean-square error—while the misspecified procedure

produces the estimated that are very imprecise.

Bias and Root-Mean-Square Error of the Algorithms
Misspecified Proposed Oracle

Bias 0.42 0.01 0.07
RMSE 0.42 0.07 0.21

Table 1: Bias and Root-Mean-Square Error
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Figure 1: Simulated Distributions of the Price Coefficient

6.2 Computational Costs

One of the main advantages of our procedure is its computational simplicity. Even for a single

dimensional individual level characteristic, Z, it converges on average almost two times faster

than the misspecified procedure (which requires just a single additional parameter) and almost

four times faster than the correct specification (two additional parameters). When the dimen-

sionality of Z or the complexity of β(Z) as a function of Z increase, the difference becomes even

more substantial.
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Computational Times of the Algorithms
Misspecified Proposed Oracle

Average time 191 s 107 s 406 s
Standard deviation 164 s 105 s 317 s

Table 2: Computational Costs

7 Conclusion

The method of estimation that we propose is likely to outperform the approach commonly used

in the literature unless the correct functional form is known to the researcher. We also show

that the proposed estimator has nice large sample properties and converges substantially faster

than the alternatives.

There are several potential directions for future research. First, the optimal choice of Z0

should be investigated. As different markets may be heterogeneous in terms of the distributions

of Z, the precision of the estimates may suffer from the choice of Z0 that is the same for every

market. Second, most of the machine learning procedures require the choice of a tuning param-

eter (or parameters) that was largely ignored in this paper. Third, the statistical properties of

the relevant hypotheses tests may be investigated. Finally, it would be useful to see how the

proposed method performs in applications compared to the alternative procedures.
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